Lung issues? Coronavirus concerns? Why you need to know and test yourself for TGF Beta 1. - GlutaGenic.com™

2033 Wood St, Sarasota, FL 34237, USA
Cart 0 items - $0.00 0

Lung issues? Coronavirus concerns? Why you need to know and test yourself for TGF Beta 1.

Death due to coronavirus infection is due to lung fibrosis as a result of ARDS or acute respiratory distress syndrome. TGF-β activation is one of the major contributors to this fibrosis which can also have a life long consequence due lung damage after the infection is resolved. Lets take a deep dive into TGF-β and how you can better be prepared for an infection through specific lab testing and natural strategies to lower TGF-β.

Normal TGF-β Range:  <2380 pg/ml

What is TGF-β?

TGF-β regulates multiple cellular processes such as growth suppression of epithelial cells, alveolar epithelial cell differentiation, fibroblast activation, and extracellular matrix organization. These effects are closely associated with tissue remodeling in pulmonary fibrosis and emphysema. TGF-β is also central to T cell homeostasis and is deeply involved in asthmatic airway inflammation. TGF-β is the most potent inducer of epithelial-mesenchymal transition in non-small cell lung cancer cells and is pivotal to the development of tumor-promoting microenvironment in the lung cancer tissue. This review summarizes and integrates the current knowledge of TGF-β signaling relevant to lung health and disease.

TGF-β is necessary for lung organogenesis and homeostasis, and is involved in many respiratory diseases, including pulmonary fibrosis, emphysema, bronchial asthma, and lung cancer [4].

TGF Beta-1 – Transforming Growth Factor Beta-1

TGF Beta-1 is a protein that has important regulatory effects throughout innate immune pathways.  This protein helps control the growth and division (proliferation) of cells, the process by which cells mature to carry out specific functions (differentiation), cell movement (motility), and the self-destruction of cells (apoptosis).  The TGF Beta-1 protein is found throughout the body and plays a role in development before birth, the formation of blood vessels, the regulation of muscle tissue and body fat development, wound healing, and immune system function (especially regulatory T-cells).

TGF Beta-1 can impair T-regulatory cell function, which in turn contributes to the activation of autoimmunity, yet TGF Beta-1 also plays a role in suppressing autoimmunity(!).  TGF Beta-1 has become important in the exploding incidences of childhood asthma, raising the tantalizing issue of remodeling due to biotoxin exposure.  The EPA says that 21% of all new cases of asthma are due to exposure to Water Damaged Buildings.  If an individual develops wheezing after exposure to a water damaged building, look for remodeling to be the cause.  Remodeling means “something” happens that the airway changes to be more reactive and in need of medications to reduce wheezing.  Neurologic, autoimmune and many other systemmic problems also are found with high TGF Beta-1.

TGF-β1 rises in plasma and lung tissues in patients during the early phase of SARS14,15. TGF-β1 is the major mediator of fibrosis, up-regulating the expression of pro-fibrotic genes such as vimentin, type I and type III collagen16,17

TGF-β Signaling in Pulmonary Diseases: Activated TGF-β is involved in the pathogenesis of emphysema!

Lack of proper TGF-β signaling predisposes the lungs to develop emphysema while conferring resistance to fibrosis.

You could place “High risk of death from coronavirus infection” with “Lung cancer” !

TGF-β is essential for healthy lungs: lung organogenesis, homeostasis, and pathological conditions such as fibrosis, asthma COPD. Because TGF-β is involved in pulmonary fibrosis it can be a high risk marker for those looking to prepare for survival of a server viral infection such as with corona virus. There have been clinical trials testing the efficacy of inhibitors of TGF-β [129].

Resources on TGF-B

1. Morikawa M., Derynck R., Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016;8:a021873. doi: 10.1101/cshperspect.a021873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]2. Derynck R., Jarrett J.A., Chen E.Y., Eaton D.H., Bell J.R., Assoian R.K., Roberts A.B., Sporn M.B., Goeddel D.V. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316:701–705. doi: 10.1038/316701a0. [PubMed] [CrossRef] [Google Scholar]3. Franzén P., ten Dijke P., Ichijo H., Yamashita H., Schulz P., Heldin C.H., Miyazono K. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993;75:681–692. doi: 10.1016/0092-8674(93)90489-D. [PubMed] [CrossRef] [Google Scholar]4. Aschner Y., Downey G.P. Transforming Growth Factor-β: Master Regulator of the Respiratory System in Health and Disease. Am. J. Respir. Cell Mol. Biol. 2016;54:647–655. doi: 10.1165/rcmb.2015-0391TR.[PMC free article] [PubMed] [CrossRef] [Google Scholar]5. Crawford S.E., Stellmach V., Murphy-Ullrich J.E., Ribeiro S.M., Lawler J., Hynes R.O., Boivin G.P., Bouck N. Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 1998;93:1159–1170. doi: 10.1016/S0092-8674(00)81460-9. [PubMed] [CrossRef] [Google Scholar]6. Miyazono K., Heldin C.H. Role for carbohydrate structures in TGF-beta 1 latency. Nature. 1989;338:158–160. doi: 10.1038/338158a0. [PubMed] [CrossRef] [Google Scholar]7. Shi M., Zhu J., Wang R., Chen X., Mi L., Walz T., Springer T.A. Latent TGF-β structure and activation. Nature. 2011;474:343–349. doi: 10.1038/nature10152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. Kanzaki T., Olofsson A., Morén A., Wernstedt C., Hellman U., Miyazono K., Claesson-Welsh L., Heldin C.H. TGF-beta 1 binding protein: A component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell. 1990;61:1051–1061. doi: 10.1016/0092-8674(90)90069-Q. [PubMed] [CrossRef] [Google Scholar]9. Colarossi C., Chen Y., Obata H., Jurukovski V., Fontana L., Dabovic B., Rifkin D.B. Lung alveolar septation defects in Ltbp-3-null mice. Am. J. Pathol. 2005;167:419–428. doi: 10.1016/S0002-9440(10)62986-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. Dabovic B., Chen Y., Choi J., Davis E.C., Sakai L.Y., Todorovic V., Vassallo M., Zilberberg L., Singh A., Rifkin D.B. Control of lung development by latent TGF-β binding proteins. J. Cell. Physiol. 2011;226:1499–1509. doi: 10.1002/jcp.22479. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Noda K., Dabovic B., Takagi K., Inoue T., Horiguchi M., Hirai M., Fujikawa Y., Akama T.O., Kusumoto K., Zilberberg L., et al. Latent TGF-β binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc. Natl. Acad. Sci. USA. 2013;110:2852–2857. doi: 10.1073/pnas.1215779110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. Sterner-Kock A., Thorey I.S., Koli K., Wempe F., Otte J., Bangsow T., Kuhlmeier K., Kirchner T., Jin S., Keski-Oja J., et al. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 2002;16:2264–2273. doi: 10.1101/gad.229102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]13. Buscemi L., Ramonet D., Klingberg F., Formey A., Smith-Clerc J., Meister J.J., Hinz B. The single-molecule mechanics of the latent TGF-β1 complex. Curr. Biol. 2011;21:2046–2054. doi: 10.1016/j.cub.2011.11.037. [PubMed] [CrossRef] [Google Scholar]14. Saito A., Suzuki H.I., Horie M., Ohshima M., Morishita Y., Abiko Y., Nagase T. An integrated expression profiling reveals target genes of TGF-β and TNF-α possibly mediated by microRNAs in lung cancer cells. PLoS ONE. 2013;8:e56587. doi: 10.1371/journal.pone.0056587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]15. Horie M., Saito A., Noguchi S., Yamaguchi Y., Ohshima M., Morishita Y., Suzuki H.I., Kohyama T., Nagase T. Differential knockdown of TGF-β ligands in a three-dimensional co-culture tumor-stromal interaction model of lung cancer. BMC Cancer. 2014;14:580. doi: 10.1186/1471-2407-14-580.[PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Heldin C.H., Miyazono K., ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–471. doi: 10.1038/37284. [PubMed] [CrossRef] [Google Scholar]17. Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–584. doi: 10.1038/nature02006. [PubMed] [CrossRef] [Google Scholar]18. Mullen A.C., Orlando D.A., Newman J.J., Lovén J., Kumar R.M., Bilodeau S., Reddy J., Guenther M.G., DeKoter R.P., Young R.A. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell. 2011;147:565–576. doi: 10.1016/j.cell.2011.08.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]19. Massague J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012;13:616–630. doi: 10.1038/nrm3434. [PMC free article] [PubMed] [CrossRef] [Google Scholar]20. Miyazawa K., Miyazono K. Regulation of TGF-β Family Signaling by Inhibitory Smads. Cold Spring Harb. Perspect. Biol. 2017;9:a022095. doi: 10.1101/cshperspect.a022095. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Nakao A., Afrakhte M., Morén A., Nakayama T., Christian J.L., Heuchel R., Itoh S., Kawabata M., Heldin N.E., Heldin C.H., et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–635. [PubMed] [Google Scholar]22. Ebisawa T., Fukuchi M., Murakami G., Chiba T., Tanaka K., Imamura T., Miyazono K. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 2001;276:12477–12480. doi: 10.1074/jbc.C100008200. [PubMed] [CrossRef] [Google Scholar]23. Massague J. Integration of Smad and MAPK pathways: A link and a linker revisited. Genes Dev. 2003;17:2993–2997. doi: 10.1101/gad.1167003. [PubMed] [CrossRef] [Google Scholar]24. Kang J.S., Saunier E.F., Akhurst R.J., Derynck R. The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat. Cell Biol. 2008;10:654–664. doi: 10.1038/ncb1728. [PMC free article][PubMed] [CrossRef] [Google Scholar]25. Xu J., Du Y., Deng H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell. 2015;16:119–134. doi: 10.1016/j.stem.2015.01.013. [PubMed] [CrossRef] [Google Scholar]26. Minoo P., Su G., Drum H., Bringas P., Kimura S. Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(−/−) mouse embryos. Dev. Biol. 1999;209:60–71. doi: 10.1006/dbio.1999.9234.[PubMed] [CrossRef] [Google Scholar]27. Bohinski R.J., Di Lauro R., Whitsett J.A. The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol. Cell. Biol. 1994;14:5671–5681. doi: 10.1128/MCB.14.9.5671. [PMC free article] [PubMed] [CrossRef] [Google Scholar]28. Minoo P., Hu L., Zhu N., Borok Z., Bellusci S., Groffen J., Kardassis D., Li C. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res. 2008;36:179–188. doi: 10.1093/nar/gkm871. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Isogaya K., Koinuma D., Tsutsumi S., Saito R.A., Miyazawa K., Aburatani H., Miyazono K. A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression. Cell Res. 2014;24:994–1008. doi: 10.1038/cr.2014.97. [PMC free article] [PubMed] [CrossRef] [Google Scholar]30. Saito R.A., Watabe T., Horiguchi K., Kohyama T., Saitoh M., Nagase T., Miyazono K. Thyroid transcription factor-1 inhibits transforming growth factor-beta-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res. 2009;69:2783–2791. doi: 10.1158/0008-5472.CAN-08-3490. [PubMed] [CrossRef] [Google Scholar]31. Herriges M., Morrisey E.E. Lung development: Orchestrating the generation and regeneration of a complex organ. Development. 2014;141:502–513. doi: 10.1242/dev.098186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]32. Bragg A.D., Moses H.L., Serra R. Signaling to the epithelium is not sufficient to mediate all of the effects of transforming growth factor beta and bone morphogenetic protein 4 on murine embryonic lung development. Mech. Dev. 2001;109:13–26. doi: 10.1016/S0925-4773(01)00508-1. [PubMed] [CrossRef] [Google Scholar]33. Shull M.M., Ormsby I., Kier A.B., Pawlowski S., Diebold R.J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D., et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–699. doi: 10.1038/359693a0. [PMC free article][PubMed] [CrossRef] [Google Scholar]34. Kulkarni A.B., Huh C.G., Becker D., Geiser A., Lyght M., Flanders K.C., Roberts A.B., Sporn M.B., Ward J.M., Karlsson S. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA. 1993;90:770–774. doi: 10.1073/pnas.90.2.770. [PMC free article] [PubMed] [CrossRef] [Google Scholar]35. Sanford L.P., Ormsby I., Gittenberger-de Groot A.C., Sariola H., Friedman R., Boivin G.P., Cardell E.L., Doetschman T. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997;124:2659–2670.[PMC free article] [PubMed] [Google Scholar]36. Kaartinen V., Voncken J.W., Shuler C., Warburton D., Bu D., Heisterkamp N., Groffen J. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 1995;11:415–421. doi: 10.1038/ng1295-415. [PubMed] [CrossRef] [Google Scholar]37. Chen H., Zhuang F., Liu Y.H., Xu B., Del Moral P., Deng W., Chai Y., Kolb M., Gauldie J., Warburton D., et al. TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung. Eur. Respir. J. 2008;32:285–295. doi: 10.1183/09031936.00165407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]38. Li M., Krishnaveni M.S., Li C., Zhou B., Xing Y., Banfalvi A., Li A., Lombardi V., Akbari O., Borok Z., et al. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J. Clin. Investig. 2011;121:277–287. doi: 10.1172/JCI42090. [PMC free article][PubMed] [CrossRef] [Google Scholar]39. Bonniaud P., Kolb M., Galt T., Robertson J., Robbins C., Stampfli M., Lavery C., Margetts P.J., Roberts A.B., Gauldie J. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J. Immunol. 2004;173:2099–2108. doi: 10.4049/jimmunol.173.3.2099. [PubMed] [CrossRef] [Google Scholar]40. Chen H., Sun J., Buckley S., Chen C., Warburton D., Wang X.F., Shi W. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005;288:L683–L691. doi: 10.1152/ajplung.00298.2004.[PubMed] [CrossRef] [Google Scholar]41. Xing Y., Li C., Li A., Sridurongrit S., Tiozzo C., Bellusci S., Borok Z., Kaartinen V., Minoo P. Signaling via Alk5 controls the ontogeny of lung Clara cells. Development. 2010;137:825–833. doi: 10.1242/dev.040535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Li M., Li C., Liu Y.H., Xing Y., Hu L., Borok Z., Kwong K.Y., Minoo P. Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: Cross-talk between TGF-beta and Sonic hedgehog pathways. J. Biol. Chem. 2008;283:36257–36264. doi: 10.1074/jbc.M806786200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]43. Li A., Ma S., Smith S.M., Lee M.K., Fischer A., Borok Z., Bellusci S., Li C., Minoo P. Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate. BMC Biol. 2016;14:19. doi: 10.1186/s12915-016-0242-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Zhou L., Dey C.R., Wert S.E., Whitsett J.A. Arrested lung morphogenesis in transgenic mice bearing an SP-C-TGF-beta 1 chimeric gene. Dev. Biol. 1996;175:227–238. doi: 10.1006/dbio.1996.0110.[PubMed] [CrossRef] [Google Scholar]45. Xing Y., Li C., Hu L., Tiozzo C., Li M., Chai Y., Bellusci S., Anderson S., Minoo P. Mechanisms of TGFbeta inhibition of LUNG endodermal morphogenesis: The role of TbetaRII, Smads, Nkx2.1 and Pten. Dev. Biol. 2008;320:340–350. doi: 10.1016/j.ydbio.2008.04.044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]46. Hogan B.L., Barkauskas C.E., Chapman H.A., Epstein J.A., Jain R., Hsia C.C., Niklason L., Calle E., Le A., Randell S.H., et al. Repair and regeneration of the respiratory system: Complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell. 2014;15:123–138. doi: 10.1016/j.stem.2014.07.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]47. Ryan R.M., Mineo-Kuhn M.M., Kramer C.M., Finkelstein J.N. Growth factors alter neonatal type II alveolar epithelial cell proliferation. Am. J. Physiol. 1994;266:L17–L22. doi: 10.1152/ajplung.1994.266.1.L17. [PubMed] [CrossRef] [Google Scholar]48. Saitoh M. Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression. Cancer Sci. 2015;106:481–488. doi: 10.1111/cas.12630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Shirakihara T., Saitoh M., Miyazono K. Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta. Mol. Biol. Cell. 2007;18:3533–3544. doi: 10.1091/mbc.e07-03-0249. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008;10:593–601. doi: 10.1038/ncb1722. [PubMed] [CrossRef] [Google Scholar]51. Willis B.C., Liebler J.M., Luby-Phelps K., Nicholson A.G., Crandall E.D., du Bois R.M., Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: Potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 2005;166:1321–1332. doi: 10.1016/S0002-9440(10)62351-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]52. Kage H., Borok Z. EMT and interstitial lung disease: A mysterious relationship. Curr. Opin. Pulm. Med. 2012;18:517–523. doi: 10.1097/MCP.0b013e3283566721. [PMC free article] [PubMed] [CrossRef] [Google Scholar]53. Borok Z., Hami A., Danto S.I., Zabski S.M., Crandall E.D. Rat serum inhibits progression of alveolar epithelial cells toward the type I cell phenotype in vitro. Am. J. Respir. Cell Mol. Biol. 1995;12:50–55. doi: 10.1165/ajrcmb.12.1.7811470. [PubMed] [CrossRef] [Google Scholar]54. Zhao L., Yee M., O’Reilly M.A. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013;305:L409–L418. doi: 10.1152/ajplung.00032.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]55. Barkauskas C.E., Cronce M.J., Rackley C.R., Bowie E.J., Keene D.R., Stripp B.R., Randell S.H., Noble P.W., Hogan B.L. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 2013;123:3025–3036. doi: 10.1172/JCI68782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]56. Jain R., Barkauskas C.E., Takeda N., Bowie E.J., Aghajanian H., Wang Q., Padmanabhan A., Manderfield L.J., Gupta M., Li D., et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat. Commun. 2015;6:6727. doi: 10.1038/ncomms7727. [PMC free article] [PubMed] [CrossRef] [Google Scholar]57. Jacob A., Morley M., Hawkins F., McCauley K.B., Jean J.C., Heins H., Na C.L., Weaver T.E., Vedaie M., Hurley K., et al. Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell. 2017;21:472–488. doi: 10.1016/j.stem.2017.08.014. [PMC free article][PubMed] [CrossRef] [Google Scholar]58. Yamamoto Y., Gotoh S., Korogi Y., Seki M., Konishi S., Ikeo S., Sone N., Nagasaki T., Matsumoto H., Muro S., et al. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat. Methods. 2017;14:1097–1106. doi: 10.1038/nmeth.4448. [PubMed] [CrossRef] [Google Scholar]59. Green M.D., Chen A., Nostro M.C., d’Souza S.L., Schaniel C., Lemischka I.R., Gouon-Evans V., Keller G., Snoeck H.W. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 2011;29:267–272. doi: 10.1038/nbt.1788. [PMC free article][PubMed] [CrossRef] [Google Scholar]60. King T.E., Jr., Pardo A., Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949–1961. doi: 10.1016/S0140-6736(11)60052-4. [PubMed] [CrossRef] [Google Scholar]61. Coker R.K., Laurent G.J., Jeffery P.K., du Bois R.M., Black C.M., McAnulty R.J. Localisation of transforming growth factor beta1 and beta3 mRNA transcripts in normal and fibrotic human lung. Thorax. 2001;56:549–556. doi: 10.1136/thorax.56.7.549. [PMC free article] [PubMed] [CrossRef] [Google Scholar]62. Broekelmann T.J., Limper A.H., Colby T.V., McDonald J.A. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc. Natl. Acad. Sci. USA. 1991;88:6642–6646. doi: 10.1073/pnas.88.15.6642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]63. Garrison G., Huang S.K., Okunishi K., Scott J.P., Kumar Penke L.R., Scruggs A.M., Peters-Golden M. Reversal of myofibroblast differentiation by prostaglandin E(2) Am. J. Respir. Cell Mol. Biol. 2013;48:550–558. doi: 10.1165/rcmb.2012-0262OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]64. Bauman K.A., Wettlaufer S.H., Okunishi K., Vannella K.M., Stoolman J.S., Huang S.K., Courey A.J., White E.S., Hogaboam C.M., Simon R.H., et al. The antifibrotic effects of plasminogen activation occur via prostaglandin E2 synthesis in humans and mice. J. Clin. Investig. 2010;120:1950–1960. doi: 10.1172/JCI38369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]65. Cho M.H., McDonald M.L., Zhou X., Mattheisen M., Castaldi P.J., Hersh C.P., Demeo D.L., Sylvia J.S., Ziniti J., Laird N.M., et al. Risk loci for chronic obstructive pulmonary disease: A genome-wide association study and meta-analysis. Lancet Respir. Med. 2014;2:214–225. doi: 10.1016/S2213-2600(14)70002-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]66. Takizawa H., Tanaka M., Takami K., Ohtoshi T., Ito K., Satoh M., Okada Y., Yamasawa F., Nakahara K., Umeda A. Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD) Am. J. Respir. Crit. Care Med. 2001;163:1476–1483. doi: 10.1164/ajrccm.163.6.9908135. [PubMed] [CrossRef] [Google Scholar]67. Zhao J., Shi W., Wang Y.L., Chen H., Bringas P., Jr., Datto M.B., Frederick J.P., Wang X.F., Warburton D. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;282:L585–L593. doi: 10.1152/ajplung.00151.2001. [PubMed] [CrossRef] [Google Scholar]68. Morris D.G., Huang X., Kaminski N., Wang Y., Shapiro S.D., Dolganov G., Glick A., Sheppard D. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature. 2003;422:169–173. doi: 10.1038/nature01413. [PubMed] [CrossRef] [Google Scholar]69. Munger J.S., Huang X., Kawakatsu H., Griffiths M.J., Dalton S.L., Wu J., Pittet J.F., Kaminski N., Garat C., Matthay M.A., et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96:319–328. doi: 10.1016/S0092-8674(00)80545-0. [PubMed] [CrossRef] [Google Scholar]70. Horan G.S., Wood S., Ona V., Li D.J., Lukashev M.E., Weinreb P.H., Simon K.J., Hahm K., Allaire N.E., Rinaldi N.J., et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 2008;177:56–65. doi: 10.1164/rccm.200706-805OC. [PubMed] [CrossRef] [Google Scholar]71. Jankowich M.D., Roundsm S.I.S. Combined pulmonary fibrosis and emphysema syndrome: A review. Chest. 2012;141:222–231. doi: 10.1378/chest.11-1062. [PMC free article] [PubMed] [CrossRef] [Google Scholar]72. Papi A., Brightling C., Pedersen S.E., Reddel H.K. Asthma. Lancet. 2018;391:783–800. doi: 10.1016/S0140-6736(17)33311-1. [PubMed] [CrossRef] [Google Scholar]73. Hirota N., Martin J.G. Mechanisms of airway remodeling. Chest. 2013;144:1026–1032. doi: 10.1378/chest.12-3073. [PubMed] [CrossRef] [Google Scholar]74. James A.L., Bai T.R., Mauad T., Abramson M.J., Dolhnikoff M., McKay K.O., Maxwell P.S., Elliot J.G., Green F.H. Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur. Respir. J. 2009;34:1040–1045. doi: 10.1183/09031936.00181608. [PubMed] [CrossRef] [Google Scholar]75. Moffatt M.F., Gut I.G., Demenais F., Strachan D.P., Bouzigon E., Heath S., von Mutius E., Farrall M., Lathrop M., Cookson W.O. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010;363:1211–1221. doi: 10.1056/NEJMoa0906312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]76. Yao Y.S., Chang W.W., He L.P., Jin Y.L., Li C.P. An updated meta-analysis of transforming growth factor-β1 gene: Three well-characterized polymorphisms with asthma. Hum. Immunol. 2016;77:1291–1299. doi: 10.1016/j.humimm.2016.09.011. [PubMed] [CrossRef] [Google Scholar]77. Frischmeyer-Guerrerio P.A., Guerrerio A.L., Oswald G., Chichester K., Myers L., Halushka M.K., Oliva-Hemker M., Wood R.A., Dietz H.C. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci. Transl. Med. 2013;5:195ra94. doi: 10.1126/scitranslmed.3006448.[PMC free article] [PubMed] [CrossRef] [Google Scholar]78. Redington A.E., Madden J., Frew A.J., Djukanovic R., Roche W.R., Holgate S.T., Howarth P.H. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am. J. Respir. Crit. Care Med. 1997;156:642–647. doi: 10.1164/ajrccm.156.2.9605065. [PubMed] [CrossRef] [Google Scholar]79. Vignola A.M., Chanez P., Chiappara G., Merendino A., Pace E., Rizzo A., la Rocca A.M., Bellia V., Bonsignore G., Bousquet J. Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am. J. Respir. Crit. Care Med. 1997;156:591–599. doi: 10.1164/ajrccm.156.2.9609066.[PubMed] [CrossRef] [Google Scholar]80. Ohno I., Nitta Y., Yamauchi K., Hoshi H., Honma M., Woolley K., O’Byrne P., Tamura G., Jordana M., Shirato K. Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am. J. Respir. Cell Mol. Biol. 1996;15:404–409. doi: 10.1165/ajrcmb.15.3.8810646.[PubMed] [CrossRef] [Google Scholar]81. Ojiaku C.A., Cao G., Zhu W., Yoo E.J., Shumyatcher M., Himes B.E., An S.S., Panettieri R.A., Jr. TGF-β1 Evokes Human Airway Smooth Muscle Cell Shortening and Hyperresponsiveness via Smad3. Am. J. Respir. Cell Mol. Biol. 2018;58:575–584. doi: 10.1165/rcmb.2017-0247OC. [PMC free article][PubMed] [CrossRef] [Google Scholar]82. Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N., McGrady G., Wahl S.M. Conversion of peripheral CD4 + CD25 − naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003;198:1875–1886. doi: 10.1084/jem.20030152.[PMC free article] [PubMed] [CrossRef] [Google Scholar]83. Marie J.C., Letterio J.J., Gavin M., Rudensky A.Y. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4 + CD25 + regulatory T cells. J. Exp. Med. 2005;201:1061–1067. doi: 10.1084/jem.20042276. [PMC free article] [PubMed] [CrossRef] [Google Scholar]84. Kearley J., Robinson D.S., Lloyd C.M. CD4 + CD25 + regulatory T cells reverse established allergic airway inflammation and prevent airway remodeling. J. Allergy Clin. Immunol. 2008;122:617–624. doi: 10.1016/j.jaci.2008.05.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]85. Li M.O., Sanjabi S., Flavell R.A. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25:455–471. doi: 10.1016/j.immuni.2006.07.011. [PubMed] [CrossRef] [Google Scholar]86. Zhu J., Yamane H., Paul W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 2010;28:445–489. doi: 10.1146/annurev-immunol-030409-101212. [PMC free article] [PubMed] [CrossRef] [Google Scholar]87. Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238. doi: 10.1038/nature04753. [PubMed] [CrossRef] [Google Scholar]88. Mangan P.R., Harrington L.E., O’Quinn D.B., Helms W.S., Bullard D.C., Elson C.O., Hatton R.D., Wahl S.M., Schoeb T.R., Weaver C.T. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–234. doi: 10.1038/nature04754. [PubMed] [CrossRef] [Google Scholar]89. Chen W., ten Dijke P. Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 2016;16:723–740. doi: 10.1038/nri.2016.112. [PubMed] [CrossRef] [Google Scholar]90. Herbst R.S., Heymach J.V., Lippman S.M. Lung cancer. N. Engl. J. Med. 2008;359:1367–1380. doi: 10.1056/NEJMra0802714. [PubMed] [CrossRef] [Google Scholar]91. Hasegawa Y., Takanashi S., Kanehira Y., Tsushima T., Imai T., Okumura K. Transforming growth factor β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer. 2001;91:964–971. doi: 10.1002/1097-0142(20010301)91:5<964::AID-CNCR1086>3.0.CO;2-O. [PubMed] [CrossRef] [Google Scholar]92. Massague J. TGFbeta in Cancer. Cell. 2008;134:215–230. doi: 10.1016/j.cell.2008.07.001.[PMC free article] [PubMed] [CrossRef] [Google Scholar]93. Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R.S., Zborowska E., Kinzler K.W., Vogelstein B., et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995;268:1336–1338. doi: 10.1126/science.7761852. [PubMed] [CrossRef] [Google Scholar]94. Hahn S.A., Schutte M., Hoque A.T., Moskaluk C.A., da Costa L.T., Rozenblum E., Weinstein C.L., Fischer A., Yeo C.J., Hruban R.H., et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–353. doi: 10.1126/science.271.5247.350. [PubMed] [CrossRef] [Google Scholar]95. Cancer Genome Atlas Research Network Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–550. doi: 10.1038/nature13385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]96. Kohno T., Nakaoku T., Tsuta K., Tsuchihara K., Matsumoto S., Yoh K., Goto K. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl. Lung Cancer Res. 2015;4:156–164.[PMC free article] [PubMed] [Google Scholar]97. Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]98. Yauch R.L., Januario T., Eberhard D.A., Cavet G., Zhu W., Fu L., Pham T.Q., Soriano R., Stinson J., Seshagiri S., et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin. Cancer Res. 2005;11:8686–8698. doi: 10.1158/1078-0432.CCR-05-1492. [PubMed] [CrossRef] [Google Scholar]99. Schliekelman M.J., Taguchi A., Zhu J., Dai X., Rodriguez J., Celiktas M., Zhang Q., Chin A., Wong C.H., Wang H., et al. Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival. Cancer Res. 2015;75:1789–1800. doi: 10.1158/0008-5472.CAN-14-2535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]100. Horiguchi K., Shirakihara T., Nakano A., Imamura T., Miyazono K., Saitoh M. Role of Ras signaling in the induction of snail by transforming growth factor-beta. J. Biol. Chem. 2009;284:245–253. doi: 10.1074/jbc.M804777200. [PubMed] [CrossRef] [Google Scholar]101. Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–715. doi: 10.1016/j.cell.2008.03.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]102. Zheng X., Carstens J.L., Kim J., Scheible M., Kaye J., Sugimoto H., Wu C.C., LeBleu V.S., Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–530. doi: 10.1038/nature16064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]103. Bierie B., Moses H.L. Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer. 2006;6:506–520. doi: 10.1038/nrc1926. [PubMed] [CrossRef] [Google Scholar]104. Ikushima H., Miyazono K. TGFbeta signalling: A complex web in cancer progression. Nat. Rev. Cancer. 2010;10:415–424. doi: 10.1038/nrc2853. [PubMed] [CrossRef] [Google Scholar]105. Pickup M., Novitskiy S., Moses H.L. The roles of TGFβ in the tumour microenvironment. Nat. Rev. Cancer. 2013;13:788–799. doi: 10.1038/nrc3603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]106. Noguchi M., Morikawa A., Kawasaki M., Matsuno Y., Yamada T., Hirohashi S., Kondo H., Shimosato Y. Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer. 1995;75:2844–2852. doi: 10.1002/1097-0142(19950615)75:12<2844::AID-CNCR2820751209>3.0.CO;2-#. [PubMed] [CrossRef] [Google Scholar]107. Micke P., Ostman A. Tumour-stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004;45(Suppl. 2):S163–S175. doi: 10.1016/j.lungcan.2004.07.977.[PubMed] [CrossRef] [Google Scholar]108. Saito R.A., Micke P., Paulsson J., Augsten M., Peña C., Jönsson P., Botling J., Edlund K., Johansson L., Carlsson P., et al. Forkhead box F1 regulates tumor-promoting properties of cancer-associated fibroblasts in lung cancer. Cancer Res. 2010;70:2644–2654. doi: 10.1158/0008-5472.CAN-09-3644.[PubMed] [CrossRef] [Google Scholar]109. Horie M., Saito A., Mikami Y., Ohshima M., Morishita Y., Nakajima J., Kohyama T., Nagase T. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model. Biochem. Biophys. Res. Commun. 2012;423:158–163. doi: 10.1016/j.bbrc.2012.05.104. [PubMed] [CrossRef] [Google Scholar]110. Navab R., Strumpf D., Bandarchi B., Zhu C.Q., Pintilie M., Ramnarine V.R., Ibrahimov E., Radulovich N., Leung L., Barczyk M., et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc. Natl. Acad. Sci. USA. 2011;108:7160–7165. doi: 10.1073/pnas.1014506108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]111. Heldin C.H., Rubin K., Pietras K., Ostman A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer. 2004;4:806–813. doi: 10.1038/nrc1456. [PubMed] [CrossRef] [Google Scholar]112. Yoshimatsu Y., Miyazaki H., Watabe T. Roles of signaling and transcriptional networks in pathological lymphangiogenesis. Adv. Drug Deliv. Rev. 2016;99 Pt B:161–171. doi: 10.1016/j.addr.2016.01.020. [PubMed] [CrossRef] [Google Scholar]113. Flavell R.A., Sanjabi S., Wrzesinski S.H., Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat. Rev. Immunol. 2010;10:554–567. doi: 10.1038/nri2808.[PMC free article] [PubMed] [CrossRef] [Google Scholar]114. Fridlender Z.G., Sun J., Kim S., Kapoor V., Cheng G., Ling L., Worthen G.S., Albelda S.M. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–194. doi: 10.1016/j.ccr.2009.06.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]115. Tauriello D.V.F., Palomo-Ponce S., Stork D., Berenguer-Llergo A., Badia-Ramentol J., Iglesias M., Sevillano M., Ibiza S., Cañellas A., Hernando-Momblona X., et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–543. doi: 10.1038/nature25492.[PubMed] [CrossRef] [Google Scholar]116. Mariathasan S., Turley S.J., Nickles D., Castiglioni A., Yuen K., Wang Y., Kadel Iii E.E., Koeppen H., Astarita J.L., Cubas R., et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–548. doi: 10.1038/nature25501. [PMC free article] [PubMed] [CrossRef] [Google Scholar]117. Micke P., Faldum A., Metz T., Beeh K.M., Bittinger F., Hengstler J.G., Buhl R. Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer—What limits limited disease? Lung Cancer. 2002;37:271–276. doi: 10.1016/S0169-5002(02)00072-7. [PubMed] [CrossRef] [Google Scholar]118. Borges M., Linnoila R.I., van de Velde H.J., Chen H., Nelkin B.D., Mabry M., Baylin S.B., Ball D.W. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature. 1997;386:852–855. doi: 10.1038/386852a0. [PubMed] [CrossRef] [Google Scholar]119. Horie M., Saito A., Ohshima M., Suzuki H.I., Nagase T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci. 2016;107:1755–1766. doi: 10.1111/cas.13078.[PMC free article] [PubMed] [CrossRef] [Google Scholar]120. Mollaoglu G., Guthrie M.R., Böhm S., Brägelmann J., Can I., Ballieu P.M., Marx A., George J., Heinen C., Chalishazar M.D., et al. MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell. 2017;31:270–285. doi: 10.1016/j.ccell.2016.12.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]121. Hougaard S., Norgaard P., Abrahamsen N., Moses H.L., Spang-Thomsen M., Poulsen H.S. Inactivation of the transforming growth factor β type II receptor in human small cell lung cancer cell lines. Br. J. Cancer. 1999;79:1005–1011. doi: 10.1038/sj.bjc.6690161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]122. Murai F., Koinuma D., Shinozaki-Ushiku A., Fukayama M., Miyaozono K., Ehata S. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov. 2015;1:15026. doi: 10.1038/celldisc.2015.26. [PMC free article] [PubMed] [CrossRef] [Google Scholar]123. Horie M., Kaczkowski B., Ohshima M., Matsuzaki H., Noguchi S., Mikami Y., Lizio M., Itoh M., Kawaji H., Lassmann T., et al. Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. Mol. Cancer Res. 2017;15:1354–1365. doi: 10.1158/1541-7786.MCR-17-0191. [PubMed] [CrossRef] [Google Scholar]124. Morikawa M., Koinuma D., Miyazono K., Heldin C.H. Genome-wide mechanisms of Smad binding. Oncogene. 2013;32:1609–1615. doi: 10.1038/onc.2012.191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]125. Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–319. doi: 10.1016/j.cell.2013.03.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]126. Suzuki H.I., Young R.A., Sharp P.A. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. Cell. 2017;168:1000–1014. doi: 10.1016/j.cell.2017.02.015.[PMC free article] [PubMed] [CrossRef] [Google Scholar]127. Horie M., Miyashita N., Mikami Y., Noguchi S., Yamauchi Y., Suzukawa M., Fukami T., Ohta K., Asano Y., Sato S., et al. TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018;314:L177–L191. doi: 10.1152/ajplung.00193.2017. [PubMed] [CrossRef] [Google Scholar]128. Chang H., Liu Y., Xue M., Liu H., Du S., Zhang L., Wang P. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic Acids Res. 2016;44:2514–2527. doi: 10.1093/nar/gkw126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]129. Akhurst R.J., Hata A. Targeting the TGFb signalling pathway in disease. Nat. Rev. Drug Discov. 2012;11:790–811. doi: 10.1038/nrd3810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]130. Nabhan A.N., Brownfield D.G., Harbury P.B., Krasnow M.A., Desai T.J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359:1118–1123. doi: 10.1126/science.aam6603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]131. Treutlein B., Brownfield D.G., Wu A.R., Neff N.F., Mantalas G.L., Espinoza F.H., Desai T.J., Krasnow M.A., Quake S.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371–375. doi: 10.1038/nature13173. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  1. Beijing Group of National Research Project for SARS. Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin Med J (Engl) 116, 1283–1287 (2003).
  2. Rogel, M. R. et al. Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB journal 25, 3873–3883 (2011).
  3. Kim, S. I. et al. TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 292, F1471–1478 (2007).
  4. Presser, L. D., McRae, S. & Waris, G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. Plos One 8, e56367 (2013).
  5. Frazier, W.A. Thrombospondins. Curr Opin Cell Biol 3, 792–9799 (1991).

Leave a comment